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BCCHNER'S THEOREM IN INFINITE DIMENSIONS

1. Introduction

Let G be a locally compact abelian group. A well-known theorem

of Bochner ([1], [21) states that a mapping * of G into C is positive

definite and continuous if and only if there is a unique nonnegative finite

regular Borel measure m^ onG (the dual group of G) such that ^V(g)

fG( r, g)dm^ where (r,g) denotes the action of the character r on g.
i

An alternate version of the theorem ([31) states that if A is a semi-

simple, self-adjoin,, commutative Banach algebra and * is a linear func-

tional on A, then 	 is positive and extendable if and only if there is a

finite positive Baire measure v^ on ,f (the maximal ideal space of A)

such that *(a) _ f a(M)dv^ where a is the Gelfand transform of a e A.

Here we shall extend these theorems to mappings taking values in a Banach

space X. Our results generalize the extension of Bochner's theorem made

in [ 4].

We shall, in fact, first prove that if A is a self-adjoi,nt,

commutative Banach algebra and W is a linear map of A into the Banach

space X. then is positive+ and "almost" extendable if and only If

there is a weak-*-regular, finite, positive set function v *̂* mapping

Z(,J) (the Borel field of ,f) into X** such that *(a) _ ^ &(M)dv**

(where	 is viewed as an element of 	 We next show that if the

mapping y of A into X given by y(a) _ *(a) is weakly compact++^

then v** can be viewed as a weakly regular positive vector measure v^*

itivity is with respect to a suitable cone in X.

++This means that ^r maps bounded sets in A into weekly compact sets in X.
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mapping E(X) into X and, conversely, if *(a) _ f rl(M)dvw where vW

is a weakly regular positive vector measure on E(,9) to X, then 	 is

positive and "almost" extendable and '* is weakly compact. In the case where

A = L1(G,C), these results lead to a representation of * by an element p,

of L,(G,X) i.e. *(a) = fGa(g)p,(g)dp where µ is the Haar measure on G.

We then develop an extended Bochner's theorem for maps p in LOO(G,X).

Finally, we use some particular Banach spaces to illustrate the theory.

The general results obtained here are combined kith the transform

theory on Ll(G,X) to develop an inversion theorem end a Plancherel theorem

in [5J. These theorems are also applied to the solution of convolution equa-

tions in Hilbert Spaces in [5]. The convolution equations arise in the study

of problems relating to the stability and control of systems described by

parabolic partial differential equations.

2. Positive Functions

Let X be a Banach space and let X* and X** be the dual spaces

of X and X*, respectively. If cp is an element of X*, then the opera-

tion of q) on x is denoted by (x,q)). The notion of positivity that we

use is based on 'a cone of "positive" elements contained in X. -We assume

that the cone is defined by a family of elements of X*. More precisely, we

have

DEFINITION 2.1. Let 0 be a subset of X*.	 The subset K. (jr simply K

when	 0	 is fixed bY the context) of X given by

6

(2.2)	 K^ = ( x a X: {x,(p) ie o for all (p in 0)

1

"4
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is called the cone determined bye (D.

Now let A be a Banach algebra with an involution given by a -)aK-,

a e A l and let r be a linear mapping of A into X. We then have

DEFINITION 2.3. The mapping 	 is positive with respect to the cone K.

(or (D-positive) if *(acL*) a K(D for all a in A.

We observe that	 is 0-positive if and only if the mappings

(*(.1.cp) of A into C are positive functionals for all cp in 0. Note

also that if	 is 0-positive, then, for any cp in 0, the functional

B
9)
(a,p) given by

is a symmetric bilinear form satisfying the Cauchy inequality

( 2. 5) IB(P(a,P)I2 5 B(P(a,a)B(P(^,a)

for	 a, P	 in	 A.

DEFINITION 2.6. The mapping	 is symmetric with respect to	 0 (or simply

symmetric) if	 (^V (a),^) _	 a* ,^	 for all	 q)	 in	 0	 and	 a in	 A.

If A has a unit	 e, then every	 0-positive mapping is symmetric

since (*(a),(p) _ (*(ae),(p) = B
(P

(a,e) = B,) e,a	 (	 for all	 cp.	 If

A	 does not have a unit, then	 A	 can be imbedded in an algebra A = A A C

with a unit in a natural way.	 Letting	 a	 be the unit in	 A, we can extend;-
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to a linear mapping Vx of A into X by setting yx (a+ce)
0	 0

y(a) +cx0 for a given x0 in X. Clearly	 is symmetric if and only if

N
yx is. We now have

0

DEFINITION 2.7. A (D-positive mapping y is almost extendable if (i)

is symmetric, (ii)	 is continuous, and (iii) I M a),q)) 1 2 s d1l *111101 (,Y(aa*),^)

for all (p in 0 and a in A where d is a constant with d ? 1.

DEFINITION 2.8. A 0-positive mapping 	 is extendable if y is sum tric

and if there is an xo in X such that	 (*(a),(p)12 s (xo,(p)(y(aa*).cp) for

all	 in 0 and a in A.

If A has a unit e, then any 0-positive mapping is extendable.

If A does not have a unit, then we have

PROPOSITION 2.9. A 0-positive mapping 	 is extendable if and only if

N	 N
there is an extension W of	 to A which is 0-positive.

N	 N
Proof: 'If	 is a 0-positive extension of 	 and a is the unit in A,

then, letting x0 = *(e), we deduce immediately that (^r(a),q^)^ 2 = I ( V(a),(P)^ 2

(x.o,(P)(Z(aa*),q)) _ (xo,CP)(*(C4a*),cp) (by 2.5) and that 	 is symmetric.

On the other hand, if	 is extendable, then let *(a+ce)

x 
(a+ce) = y(a)+cxo. Since (y([a+ce3[a+ce1*),Cp) = (*'aa*),q)) +2Re c(*(a) yp) +

Icl2(xo.,(P), we have ( Qcz+ce][a+ce]*),q)) 9 (*("),q)) -21c1j(*(a),q))j + (cj2(xo,q))

'j(*(aa*),(P)1/2 - 
`cj(xo,CP) 1/2]2 t 0 (as * is extendable). Thus .. * is

0-positive.

PROPOSITION 2.10. If there is an approximate identity {e n} in A, then a

continuous 0- ositive mapping W is almost extendable.
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Proofs Since (*(a*),cp)	 lim. (*(ena*),4)) = lira 	 ae* ,cp =	 a ,q) ,

	

n -) 00	 n -4 :n

is symmetric and, since IBcp(en'a)12 s B,)(en,en)B,)(a,a) s (I*IIII'wIIB,)(a,a)

II y'iIII cp Ii(*(	 ),(p), V is almost extendable.

In order to prove the extension of Bochner's theorem, we require a

condition on the family 0 defining the cone of "positive" elements. As we

shall see, the essential point is to deduce an estimate of the form 11*(a)11 2 s

qlw(CLa*)II from estimates of the form IMa) '(* 2 s dIhI1 21,T1111*(aa*)lI (^y al-

most extendable) or II(*(a),w ) I 2 s II(PII 2II x01111'v(Qa*)11 ('Y extendable). The

following definition allows us to do this.

DEFINITION 2.11. The family @ is full if there is a p > 0 such that

(2, 12) 	III s P Sup {I (x,(p)I/II^II}
Q) E ^

	

(P	 0

for all x in X.+

We now have

LEMMA 2.13. If A has a unit e, if the involution on A is continuous, and

if 0 is full, then every 0-positive mapping +y is continuous and almost

extendable.

Proof: Suppose first that a is a Hermitian element of A with 111 3 1.
2

The binomial series (1-t) 1/2 1 - g - ^ , -... converges absolutely for
2 2,

This could be replaced by the following; 0 is full relative to 	 :f there

is a p > 0 such that 11 V(a)I1 g p sup { 1 (*(a);p)I /11 q)I1 } for all a in A.
^ E ^

( 0

M
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Itl s 1 and so the series e - 2 - a2	 converges absolutely in A.

2 2;

Since the involution is continuous, the sum	 of this series is a Hermitiar:

element of A with P0* _ p2 = e-a. It follows that (^(e-a),q)) _
(*(PP*),(P) ? 0 and hence, that (*(e),cp) ? (*(a),q)). Replacing a by -a,

we have (*(e),(p) ? (*(-a),(P). But (V (a),cp) is real ( since a is Hermitian)

and so I (*(a),q))I s IhIIIIw( e )II .	 Since @ is full, 11w(a)II 5 PII*(e)II

Now, if a is any element of A, then a = 2(aaa*)

Since the involution is continuous, there is a c >0 such that 1Ia*II 5

eIIaII and so, if IIaII 5 2/c+l, then II (aia'+)/2II 5 1 and II i(a-a*)/2II 5 1.

It follows that II v(a)II2 5 2p II ^ ( e)II for all a in A with IIaII s 2/c+l.

Thus, +y is bounded and therefore continuous.

Since I(*(a),(P)12 s (^v(e),^)(y(	 ),^) ` II*IIIITII(*(aa*-),q)), W is
almost extendable.

COROLLARY 2.14. If the involution on A is continuous, if 0 is full, and

if	 is 0-positive and extendable, then yr is continuous and almost ex-

tendable.

Proof: Apply proposition 2.9 and the lemma.

Let G be a a-finite locally compact abelian group and let A

Ll(G,C). The involution on Ll(G,C) is given by o.*(g) _ _aT_-_jY and is con-

tinuous since Ll(G,C) is semi-simple. Observe that if 0 is full and

is a 0-positive mapping of L l(G,C) into X, then	 is continuous and al-

most extendable if	 is extendable (corollary 2.14) and conversely,	 is

almost extendable if	 is continuous (proposition 2.10).

Now let us introduce the following
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DEFINITION 2.15 Let p be an element of Lj G,X). The mapping p is 0-

positive definite if

N N
(2.16)	 E E cncm(P( gn-Pm), q)) ? 0

n=1 m=1

for any integer	 N, any cl,,...,cN	in	 C, any	 in G, and all

9	 in	 0.	 The mapping p	 is integrally 0- ositive definite if

(2.17)	 (IGIGa(g)a g' P(g-g')dµdµ,(P) ? 0

for <: :_ a in Ll(G,C) and all (p in 0.	 y

We then have

PROPOSITION 2.16. Let p be a continuous element of L,(G,X). Then p is

0-positive definite if and onlyif p is integrally° 0-positive definite.

Proofs If p is 0-positive definite, then p is integrally 0-positive

definite by a result of Naimark ([61, P. 397). Conversely, if p is inte-

grally 0-positive definite, then there is a continuous positive definite

function f(P mapping G into C such that f(g) _ (p(g),(p) locally al-

most everywhere on G ([61, P. 397) for each 9 in 0. Since (p(•),q))

is continuous, f
(P

( • )	 (p( • ),(p) everywhere and hence, p is 0-positive

definite.

Now it is a fact that	 is a bounded weakly compact linear map

of L1(G,C) into X with separable range if and only if there is a p with

(essentially) weakly compact range in L o(G,X) such that



IGa(g)p(g)dµ(2.21)
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(2.19)	 V(a) = fe(g)p(g)dµ

for all a in Ll(G,C) ([9], p. 279, or (71, P. 507). Moreover, 11fll =

11pil w. The fact that the weakly compact maps in Z(Ll(G,C),X) are essenti-

ally the same as the functions with (essentially) weakly compact range in

Lm(G,X) will allow us to relate the notion of 0-positivity to the notions

of O-positive definiteness and integral O-positive definiteness.

LEMMA 2.20. Let 4D be full. If	 is a weakly compact linear mapping of

Ll(G,C) into X which is 0-22sitive and extendable, then there is an

(essentially unique) integrally O-positive p in L^ O(G,X) such that

for all a in Ll(G,C). Conversely, if p is an integrally O- positive

definite element mf L (G,X) and	 is given by 2.21, then	 is 0-

positive and almgot extendable.

. Proof s Assume that is given. In view of [9], p. 279, the dapping p

exists and we need only show that p is integrally 0-positive definite.

But

(2.22)	 W(Cn*) s f jGa( g-g')a g-' p(9) dµdµ = IGfGa: g)a	 g')p(9-91 )dµdµ

by virtue of the Pubini and Tonelli theorems and the invariance of Haar

measure. Conversely, given p, we simply note that *(o a*) is determined

fl-
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by 2.22 in order to prove that * is 0-positive. Moreover, since * is con-

tinuous, * is almost extendable by proposition 2.10.

3. Bochner's Theorem for Algebras

Before proving the generalization of Bochner's theorem to maps of

A into X, we recall the following

DEFINITION 3.1. Let S be a locally e gmpact topological space and let F(S)

be the Borel field of S. A vector measure v is a weakly countably additive

set function taking values in X. The vector measure v is weakly regular

if the scalar measures (v(-),(p) are regular + for all (p in X*. The vector

measure v is 0-positive if(v(E) ,(p) ? 0 for all m in 0 and E in

E(S). A set function v**- mapping E(S) into K+* is weak= -regular if

(cp,vx-x-(-) ) is a refular scalar measure for all q) in X*. The set function

v** is 0-positive if ((P,vx* *(E)) ? 0 for ail q) in 0 and E in E(S).

We now have

THEOREM 3 .2. Let A be a self-adjoint commutative Banach algebra whose in-

volution satisfies the condition () _ $ (e.g. A semi-simple) and let 0

be a full family.. If 	 is a mapping of A into X, then w is 0-positivesitive

and almost extendable if and only if there is a set function v** mapping

E{,^) into X** such that ( i) v** is weak-*-re ar ( 11) v** is 0-

positive, ( iii) v** is finite i.e. 11 v**11 V ) < oo, ( iv) the mapping T,**

+ A scalar measure g is regular if given e > 0 and E e E( S) with

11µ11( E) < m, then there is a compact K C E and an open 0 :) E such that

11µI1(0-K) < E.



(3.3)

r

I'D

of X* into the scalar measu_es on , Kî veri by Tv„* ((p) = (v^* (• ),cp) is

continuous in the X and Co(4	 topologies in these space:, respe,-,tively,

and ( v)

for all a in A and all cp in X*.

Proofs Suppose first that

is continuous. Let

Then 11 *(a)11 = 11 *(a)II	 anca

for all cp in 0 (since

is a p > 0 such that 11*

is m-positive and almost extendable. Then

be the map of A into X given by ^(a) 	 y(a).

I Ma) A))12 s d11*1111(p11(*(M*),(P) s dj1*11j1(Pj12i1*(an')11

is almost extendable). Since 0 is full, there

(a)11 s p sup (1 (*(a), q) )1 /11w11) .	 Thus, there is a
^ E ^

C 0
D

constant k (= p2d11 *11) such that

(3.4)	 J11*(a)112 s g1*(Cn*)11

for all a
Qq

in A. It follows that 11'-V(a)112 s kj*(Qa*)I) s kl+1/211*([^ 2)11.-','-/l./

s k211 *111111 	 and hence, that y is a bounded linear map.

Since A is self-ad3oint and commutative, A is dense in Co(,^/)

and	 can, therefore, be extended to C 0(,k). Let e denote the extension

Of y to _C0(,dl). We claim that there is a weak-*regular set function

V** On F( ,e) such that

+If .4f is compact, then Co(.40 is the set of all continuous complex valued

functions on _X If .k is locally compact but not compact, then Co(_40

is the set of all continuous complex valued functions on _X which "vanish

at infinity'
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(3.5)	 e(f),(p) = f f(.,e)d(v""',T)

for all f in Co(,,f ) and (p in X-*.

To verify this claim, we let M(,or) be the space of all complex

valued regular measures µ on ,4 for which 11µi) is finite ([2]). Note

that Co(,OW = M(,,t) by the Riesz representation theorem. If E e E( !L),

then let T  be the element of C 0(,W )** defined by

(3.6)
	

TE(µ) = µ( E), µ e M(,,OK)

Now define a set function v** of E(,t) into XE* by setting

(3.7)
	

v**(E) = e*(TE)

•

for E in E(,1(C), We show that v** is weak-*-regular. If cp is an'ele-

ment of X*, then e(cp) is, by the Riesz representation theorem, a meas-

are µT in M(,,,41. But

(3.8)	 µ^(F) = TF( 19) = TE(e(q ) )) = 'Vz ( TE ) (q) ) _ (v**(E),^)

and so, the set function v** is weak-*-regular. Moreover, sincefie((P)

(v**( -) ..q)) by 3.8, the mapping Tvx-* satisfies (iv). Also,

e((p)(f) _f(M)dµ^ _ ^ f(M)d(v* ,^) for f in C o(,k) so that 3.3

is satisfied. It is easy to check that 	 v**^^ ( ,^) _ ^^ ^e^^ ( [ 71, p • 492)

and so, (iii) is satisfied,



r

f f(M)d(v**,cp) ? 0

•

12

All that remains to establish the first half of the theorem is to

prove that 0* is 0-positive. If f is an element of C 0(.,/C) with

f(M) ? 0 for all M. then f1/2 is in Co ( !C) and there is a sequence

(an} in A such that	 lim an = f1/2 . Since (*(%an),^) = ^. I exn(M) I2d(v*^,cp),
n -i w

it follows that if cp is an element of 0, then 0 g Manan),(p) =	 ICtin(M)I2d;V`*,cp)

and hence, by taking limits, that

for all (p in 0 and all f in Co	 with f( • ) ? 0. But (v**(•),c))

when restricted to the Baire sets in	 is a Baire measure, and as such , is.

positive. The Baire measure can be extended to a unique regular Borel meas-

ure ([q]) which must (by uniqueness) be (v**(•),^). It follows that v**

is 0-positive.

Now suppose that v*-* is given. Since the mapping Tv** is con-

tinuous in the X and C0(.,of) topologies, the linear mapping (p -o,

f f(M)d(v**,qi) is, for each fixed f in CoLJ), continuous in the X-
topology of X* and is, therefore, generated by an element x f of X.

Thus, the mappingyre of Co(.,i(6) into X given by y^ e(f) = xf is a

bounded linear map of C 0(,f) into X. If a is an element of A, then

let *(a) _ ,Ve(a). Since' II4'(a)II = II'Ye("l s II'^eIIIIaII„ s 11%1Ilidl,	 is a

continuous linear map. If tp is an element of 0, then Wcce ),(P)

Ia(M)I 2d(v**,(D) ? 0 and ( V(a*)..q)) _ f a'(M)d(v+*.,(p) _	 a(M)d v**,^ _

a .,q)	 so. that Vr is (D-positive. Also, I (*(a),(p i 2 s [^rg' I a(M) 1 2d ( v**,Cp) ]
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[	 ?d(v**,^)}	 s (^(	 );^)( v 	^( lC),4^) s	 ^^ t'^	 ^^(.!C)^^4,^('V(prc^),4^) 	 s.

max.{1, ^^ v**^^ (,{^^^^ y^^ } ^^ ^y^^ ^^^^^ (^(acx^ ),cp)	 so that	 is almost extendable.

COROLLARY 3.10. Let A be a self-adjoint commutative Banach algebra with

(Io'^) = a and let 0 be a full family. If * is 0-positive and almost

extendable and if ^* is 2.Yeakly compact, then there is a we_ akly regular

0-positive vector measure v on E(,/() such that

(3.11)	 *(a)	 a(M)dv

for all a in A. Conversely, if v is a weakly regular 0-positive vec-

tor measure and	 is given ^Z (3.11), then	 is 0-positive and almost

extendable and	 is weakly compact.

Proof: Suppose that	 is given. Since	 is weakly compact, iy e+ is

weakly compact and so, *e *(C 0(-X )**) is contained in the natural imbedding

of X in X**. Thus, the set function v^* given by 3.7 may be identified

with a mapping v of E(,t) into X. In that case, ( v(.) ,q)) is an element

of M(-At) for all cp in X*. It follows that v ( • ) is a weakly regular

vector measure ( as v( • ) is *.weakly countably additive). Clearly v is

0-positive. Moreover, since (*(a),cp) _ f a (M)d(v,(p) _ (f a(M)dv,Cp) for

all cp in X*, 3.11 is satisfied.

On the other hand, if v is given and * is defined by 3.11

(note that a(•) is bounded and continuous), then 	 is 0-positive and

+We use the notation of the proof of the theorem.

I



1

14

almost extendable. in fact, II y (a) II < IIaII jI vII (.41 )	 IIaII II vII (.,C) and I (y(a),cp)I 2

(y("),(p)(v(,f),q)) so that y is extendable (xo = v(-X ) E X). Thus, to

complete the proof we need only show that ^ is weakly compact.

Now,	 is clearly linear and, since II y(a)II.= II 'V(a) II s 
IIvIIG/nIIaIIw,

y is continuous. Let *e be the mapping of Co( !G) into X defined by

ye(f) _ f f(M)dv. Thus, it will be enough to prove that y e is weakly com-

pact.

If (p is an element of X*, then Qp) = (v(.),cp) is an element

of MV ) . Since the set ((v(-),(P) s  cp E Y--E , IIcpII s 1) is weakly sequentially

compact as a subset of the space of scalar measures and since v is weakly

regular, a is a weakly compact mapping. It follows that y e is weakly	 I

compact and the corollary is established.

COROLLARY 3.12. If v satisfies the conditions of corollary 3.10 and lr is

liven	 3.11, then y is extendable. Conversely, if 	 is extendable

(rather than almost extendable) and if the involution on A is continuous

(e.g.A semi-simple), then a v satisfying the conditions of corolla

3.10 exists (the other hypotheses of corollary 3.10 are, of course, assumed .

Proofs The first assertion was established in the course of the proof of

corollary 3.10. The second assertion is an immediate consequence of cor-

ollary 2.14.

COROLLARY 3.13. If X is weakly complete, if A and 0 satisfy the condi-

tions of corollary 3.100 and if y is 0-positive and almost extendable, then

..
* is weakly compact.

0
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Proofs By the argument given in the proof of theorem 3.2, 	 is a continuous

linear map. I£ A has a unite, then _X is compact. Since A is dense

in C0(.A), we may extend to a continuous linear map y e of Co(,,4C)

into X. As X is weakly complete, V is weakly compact ([.73, p. 494)

and a fortiori so is V: If A does not have a unit, then we extend A

to A = A A C. Letting xo be an element of X. we extend 	 to a mapping

V of	 into X by setting y* (a+X.e) _ *(a) +Xxb` Then Z(&+Xe) = V(&) +Xxo
ry	 N

is a bounded linear map of A into X. It follows that 	 is weakly com-

pact and hence, that y is weakly compact.
F

4. Bochner's Theorem on a Group

Let G be a a-finite locally compact abelian group and let A =

L1(G,C). The involution on A is given by a*(g) = —a(--7g  and is continuous.

Let X be a Banach space and let 0 be a full family. We shall prove a

generalization of Bochner's theorem for integrally (D-positive definite map-

pings p in L.(G,X) by combining lemma 2.20 with theorem 3.2 and its ntor-

ollaries. We have

THEOREM 4.1. (A) If v is a weakly regular O-positive vector measure de-

fined on E(G) (the Borel field of tie dual group G) and if

(4.2)
	

p(g) s IG Y, & dv

then p is an integrally O- positive definite element of %(G,X).

(B) If p is an integrally 0-positive definite element of

L o(G,X), then there is a set function v** mapping E(G) into X** such

i
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that (i) v** is weak-* - regular. @-positive, and finite, (ii) the mom. TV**

given by T v** (q)) = (vX*(•),q^) is continuous in the X topology of X*

and the C0(G) topology of M(G), and (iii)

(4.3)
	

(P(9),4P) = fG r, g d(v**,^P)

for all cp in X* and ( almost) all g in. G.

Proof: (A) Let p(-) be given by 4.2. Suppose, for the moment, that p(•)

is measurable. Then p is in L^ ( G,X) since 11p(g)II s 
I{ vtI(G) for all g.

Let *(a) = fGa( g)p(g)dp for a in Ll(G,C). Then

(v^(a),^) = IGa( g)fG r, g d(v,w)dµ

= fGfGa( g) r, g dµd(v,(p)

for all cp in X* by the Fubini and Tonelli theorems. Since G and .^

can be identified ([2] or [3]), we have *(a) _ ^ a(M)dv (as v may be

viewed as a measure on _4f). But then (corollary 3.10) * is O-positive

and extendable ( corollary 3.12). The result follows immediately from 2.22

of lemma 2.20.

Thus, to complete the prop-f. of (A), we need only show that p

is measurable. To do this it will be sufficient to show that, for any set

F C G with µ(F) < w, PF(-) = Xp(-)p(-) is the limit in measure of a

sequence of simple functions where XF is the characteristic function of F.
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Since v is weakly regular, there is a finite, positive, regular

scalar measure X such that II VII (E) - ► 0 if and only if X(E) -* 0 where

IIvII(E) is the semi-variation of v on E ((7)). Therefore, given I > 00

there is a g > 0 such that if X(3-K) + < g, then JI vI) (G-K) < q/4 for K

compact in G. Since L is finite and regular, there is a compact set

K C G for which X(G-K) <	 and hence for which IIvII(G -K) < ^/4. Let

q1 ° T /2 1I vII ( G) and let N( g; K, T I) = ( g' e G: 1-( -r., 	 < T , .' r e K)+g.

Then N(g;K,% ) is an open neighborhood of g in G.i

Now G is o-finite and so there is an increasing sequence of

sets Gn withµ(Crn) < w and UGn = G. Moreover, since Haar measure is

regular, given e > 0 there is a compact set La C Gn such that p(GII Ln) < e.

The sets N(g;K,Il), g e Ln, form an open cover of Ln. Thus there are

gl, ...,g	 in Ln such that Ln C NU N(gi^K, ^1 ). Let Nn = N(gl;K,^l)
i=1

and Ni+l = N(gi+13 K$ T l) - ( N( gl; K, T 1) U ... U N ( gi; K, ql^. Then Ln C

Ybi and the union is disjoint. Let po be defined on Ln by p`(g)
n

p(gi) if g e Ni and let pn'^(•) be given by

e Pp0 ( 9) g e La
(4.4)	 pnPI(g) W 

t 
0 '
	 g

Then pn'^(•) is a simple function and we claim that

(4.5)	 µ*((g E Gn - II p( g)-Pn ,n( g)II >'q)) < e

where µ*(E)z inf µ(El), El 3 E. For if g is in Ln, then IIp(g)•- ' n(g)II =
1

+Here G-K is the complement of K.

k



(4.7)

IIP( g)-po( g)II = IIfG r,^)[1-(r,gi- )Jd'dll s IIlG_K r,79C 1-(r;=^Javll

Iffy r,g [1- r, gi- g JdVjI s 
2 + T 11I VII( G) _ ^l ( for some i) so that (g E Gn

II p( g) -pn' `( g) II > ^l) C Gn-Ln . It follows that 4.5 holds. Let pn(g)

pn/n,l/n(g) so that 
pn is a simple function.

Now suppose that a is any positive number. We show that

(4.6)	 lien v*((g E F: 11p( g) - Pn ( g)II > a)) = 0
n -a w

for any F Cr G with µ(F) < So let e > 0 be given. Then there is an

no ? max(1/a,2/e) such that µ(F " (G-Gn)) < e/2 for n ? no . It follows

that

i& ((96F: II p ( g) -pn( g) I1 > a) ) `= µ* ( ( gEF n Gn , II p( g) -pn ( g) II > a ) ) + E/2

5 0 ((gEF n Gn : itP( g)-pn( g)II > 1/n)) + e,/2

5 1/n + e/2 S e

for n ? no . In other words ., P. converges to p in measure on F. The

proof of (A) is now complete.

(B) Let *(a) = fGa(g)p(g)dµ. Then * is 0-positive and al-

most extendable by lemma 2.20. It follows from theorem 3.2 that there is a

set function v** on E(A such that (i) and (ii) are satisfied and

1.8
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for all {n in X*. Since G and Z can be identified, v** may be viewed

as a set function on E(G) and

(4.8)	 Ma),(P) = f^1fe(g)ZY^dµld(V*Y-,CP)

for all (P in X*. Application of the Pubini and Tonelli theorems then

y3.^'lds

( 4. 9)	 fe(g)(p(g),(P)dµ = (*(a),ro) = fCp(g)9CP(g)dµ

where c^P (g) = fG r, g)d(v**,cp).	 Since	 •),cp) and q_(-) are in L6(G,C),

we have (j(p(•),T)-q^(•)jj. = 0 for all <p in X*. In other words, 4.3

holds. The proof of (A) is now complete.

REMARK 4.10. Since r, g 	 ( - r, g) and since the measure vl (or the set

function vj*) ig ven ^y vl(E) = v(-E) (or' i*(E)	 v**(-E)) has the same

properties as v (or V**), p(g) is ig ven byy p(g)	 f^ ( r, g) dvl (or sat-

isfies (p(g),(P) = jG(r,g)d(i*/P)). (This agrees with convention in the

scalar case.]

We observe that if the hypotheses of (A) are satisfied and *(a)

f(p( g)p(g)dg, then the mapping A* of A into X given by	 *(a) is

weakly compact (corollary 3.10). Note also that if X is weakly complete

and p(•) is an integrally 0-positive definite element of Lj G,X), then

is weakly compact. This leads to

COROLLARY 4.11. If X is weakly complete and if p is an integrally 0-
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positive definite element of Lo,(G,X), then there is a weakly regular 0-

Positive vector measure v on Z(G) such that

(4.12)	 (P(g),Cp) = (fG(r,g)dv,CP)

for all	 in X* and (almostail g in G. if in adr?ition, @ is count-

able, then

(4.13)	 p(g) = IG(Y,g)dv

for (almost) all g in G.

Proofs The first assertion follows from corollary 3.12. On the other hand,

if 0 _ (91) is countable, then there is a g-null set N such that

(p(g)-q(g),q)) = 0 for all q3 in 0 and g A N where q(g) = fG(r,g)dv.

But then	 p ( g)-q' g)	 P sup (I (P( g)-q( g),(p )I/11cp 1l} = 0 for g ^ N. It
Cp E 0
m ^ 0

follows immediately that lip(•)-q(•)jjW = 0, i.e, that 4.13 holds.

In order to state our final corollary we require

DEFINITION 4..14. The element p of L^(G,X) is dominated if there exists

f _Ytite regular positive Borel measure X , such that

(4.15)
	

II fe(g)p(g)dµll 5 fGI a( T)Id%

6

for all a in Ll(G,C), where a is the Fourier transform of a.
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COROLLARY 4.16. Ass-ame 0 is countable. Then p is a dominated integrally

O-Positive definite element of LO,(G,X) It and only if there exists a

weakly regular 0- op sitive vector measure v of finite variation mapping

E(a) into X such that

(4.17)
	

P( g) = fG(Y g)dv.
1.

Proofs We have only to note that there exists an :isomorphism between the set

of weakly regular vector measures v; E(G) ->X with finite variation and the

set of bounded linear operators Ts C 0(G) -4X for which there exists a finite

regular positive Borel measure X such that JjT(f)jj s f^ f(y) d%. This iso- 	
V

morphism is given by T(f) = frf(Y)dv f ([9], P. 380, or [11]). Now using

theorem 4.1 (B) we have, if we assume the existence of p, that (f-f(Y)dv,q))

f-f(Y)d(v*iE,q)) for any f in. Co(G), q) in X*. But C G)" = M(G), the

space of regular, complex valued measures defined on E(G) of finite -aria-

tion, and (q),v**), (v,(P) are in M(G) . Thus, for any E in E(G), (v(E),W)

((p,v**(E)). Consider v(E) as an element of X**, then v(E) - v**(E) and

so v** is actually a measure. From the countability of 0 we derive (4.17).

The converse follows immediately from theorem 4.1 (A).

5. Some Examples

We now give several examples of spaces to which the theory applies.

EXAMPLE 5.1. Let X = Ll([0,1],C). Note that X is weakly complete. If

E = E([0,1]) is the Borel field on [0,1], then E is a separable metric

space with respect to the usual metric d(E,E') = µ(E Q Es ) where E A E'

I
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(E-E') U (E'-E) is the symmetric difference of E and E'. Let (E i) be

a countable dense set in E with E 1 = [0,1]. Let Xi be the characteristic

function of Ei and let cp i be the element of X* given by

(5.2)
	

(x('),4^i) = f-' i(s)x.(s)ds

If 0 = (q)i), then K. is the cone of (essentially) nonnegative functions.

Note also that 11cp ill s 1.

Now we claim that 0 is full. Set x +(s) = max(O,x.(s)) and x-(s)

max(0, -x.( s) ) for real x in X. Then x.( s) = x +(s) - x (s) and	 x(s) I =

x+(s) + x'(s). Moreover, x+ and x. are nonnegative. Letting foxo(s)ds

max(f Ix. +(s)&" fix (s)ds) (i.e. xo = x+ or x according to which integral

is greater), we see that

(5 . 3)	 11x(')JI1 s 2f'x0(s)ds

for real x in X- 1 Now, suppose, for example, that xo = x+. Since x+ is

measurable, (x+)-1([O,m)) = E is in E and fox o( s)ds = fEx+(s)ds = fe(s)ds.

As (Ei) is dense in E, there is a sequence ( Ei n) such that d(Ei n,E) -.)0

as n-, m. But^fE x(s)ds-fEx(s)dsi s f 	 n,Elx(s)lds and
i,n	 i,n

lim f E.	 & E1 x(s)1 ds = 0 as p(Ei n 6E)-+ O  as n —► w and x is in
n -+ w 1, n	 s

Ll([0,1],R). It follows that there is a sequence (q)i^n) such that lim (x,gi,n)
n -► w

= f^xo(s)ds and hence, that f^xo(s)ds s sup. I(x,q))l. Now choose any x in

X. Then x = x  + ix2 where x.l( • ), x20) are ;real valued. But 11(pll s 1

for 0 in 0 and so.,
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(5.4)	 11x111 5 II x111 1 + II x2 11 1 5 4 supl (x,cp)I 5 4 sup(I ( x,m)I /Il(pll)

	

q) E@	 CPF0

(P^O

for all x in X.

EXAMPLE 5.5. Let X = H be a separable Hilbert space. Fix an orthonormal

basis (ei) in H. If h E H, then h = h l+ih2 where hl = E Re(< h,e i >)ei

and h2 = E Im( < h Y e i >)ei . An element h is real if h = hl. Let Ho be

the set of all real elements h such that (i) Ilhll 
s if (ii) h is positive

i.e. < h,ei > ? 0 for all i^ (iii) h is rational i.e. < h^ei > is rational

for all i, and (iv) h is finite i.e. only a finite number of components

< hP ei > of h are not zero. Since H'* can be identified with H .. we

let 0 = Ho . In other words, if (P E 0. then (h,4i) = < h1 k > for some k

in Ho . The cone K. is the set of all positive real elements of H.

We claim that 0 is full. Suppose first that h = h l is real.

Then hl = h+ - hl where < h+ ei > = max(o, < hl^ei > } and < h- ei >

max(0 ,,- < hl., ei > } for all i. Note that ll h111 2 = ll h ill 2 + 11h111 2 . Let

k+ be the element of Ho with components < kn^e i > given by

i s N
(5.6)	 < kn.9ei 	 > =	

i

where N is chosen so that

(5.7)	
N 
11< h ,ei 2 

< —2 11hlll2

and r  is a nonnegative rational such that
•

M^



^,	 r

24

++	 +	 II h+111
(5.8)	 < hl, ei > ? rill hlll >f< hl, ei > - 	—

n,

h+

Clearly II kT1 - ^I < l/n. It follows that (hi, kn)- -4 11 h+ ll as n -4 oD.
II h11i

Similarly, there is a ^-quence n in Ho such that (hV kn ) - >IIhlll as

n	 00. Noting that for any h = h l +ih2 in H, I (h )(p) I ? max(I (hl,cp) I ,

K h2A)I ), we have II hlII 2 = II h1Ii 2 + 11 h-
111 2 - lim (h+ e) 2 + lim ( h- kn ) 2 s

n- oo.	 n->^

liml(hirkn)I2 + liml( h- kn) I
2 s 2 sup (h	 NowNow, if h = hl+ih2 is

E ^
any element of H, then II h II 2 = II h1II 2 + Il h2ll2 s 2 supl (hl,(P) 

1
2 +

2 supl ( h2,cp) 12 s 4 supl (h,cp) 1 2 . Since IIcPII s 1 if cp E 0 = Ho, we deduce

that II hII 5 2 sup (I (h,cp) l /II`)II) for all h in H. Thus, 0 is full.
(p e 0
4i^0

EXAMPLE 5.9. Let H be a separable Hilbert space and let X = X(H,H) be

the space of bounded linear maps of H into itself. Let H o be a count-

able dense subset of the closed unit ball in H and let 0 = (cP E X*:

(T,(P) _ < Tk, k >, for some k in Ho). The cone K. is the set of posi-

tive operators in e(H , H). Since IITII s 2 sup i < Th, h > I for T in
II hII	 1

;C(H,H) and since II q)II `; II k ll 2 ;5 1 for k in Ho, we have 11 T11s

2 sup (I (T,q)) l /Ilcpll). In other words, 0 is full.
CP e 0
q)A 0

EXAMPLE 5 .10. Let -9 be a bounded domain in in and let X = L_(171C)

where 1 < p < co. Let E be the Borel field of -9. Then E is a sep-

arable metric space with respect to the usual metric d(E,Et ) = µ.(E L E').

Let^
0

 (E.) be a countable-dense set in E which include all hyper-

cubes with rational vertices * eontained in -9 and let Q = (a+bi E C:

al b rational), Let Y be the set of simple functions of the form
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n
E q.XE where the q

i
 are in Q and the E. are disjoint elements of,

i=1 1 i	 1Zt

Note that Y is a countable subset of Lq ,C) where l/p + l/q = 1. It
n

is easy to check that Y is dense in Lq(-9,C). An element 	 q.XE of
i=1 1 i

is positive real ii q  is a nonnegative real number for i = 1,...,n.

Let 4D be the subset of -V consisting of all the positive real elements.

Since Xx- = Lp(9 1 C)* = Lq(921 C), 4 C X* and the cone KID is simply

the set of nonnegative functions in Lp(9,C). The proof that 0 is full

is straightforward and is, therefore, left to the reader. Theorem 4,1, when

interpreted in this context, becomes:

COROLLARY 5.11. If p is an elementof L^(G,Lp(19,C)) such that

I9( g)^ g^)p(g-g^)dpdµ is a nonnegative function in Lp( 0,^) for allGIG 

9(.) in Ll(G,C), then p(g)= fG(T,g)dv where v is a weakly regular

measure on G such that v(F) is a nonnegative function in p(-9,C)

for all F in E(G)J, and conversely.

This corollary plays a role in the study of positivesolutions of

certain partial differential equations.

EXAMPLE 5.12. Let H be a separable Hilbert space and let S =-W(H,H) be

the closed ideal of compact operators in g(H,H). It is well-known ((8])

that C(H,H)* , 91 0 ^l where ^ l is the annihilator of -o and C1

is the trace class. Moreover, ;C1 is isometrically isomorphic-with ^*

and ^o** is isometrically isomorphic with ;fi = Z(H,H). Now let Ho

be a countable dense subset of the closed unit ball in H and let 4

(q) e -W *: (T,q)) _ < Tk,k > some k in Hol. The cone 
K(D 

is the set of

positive compact operators and 0 is a countable full family.
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